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Equation 

We define an integral transform of the energy distribution function for an 
isotropic and homogeneous diluted gas. It may be interpreted as a linear com- 
bination of equilibrium states with variable temperatures. We show that the 
temporal evolution features of the distribution function are determined by the 
singularities of this temperature transform. We compare the relaxation to the 
equilibrium process for Maxwell and very hard-particle interaction models, 
finding many basic discrepancies. Finally, we formulate an alternative approach, 
which is given by an N-pole approximation with a clear physical meaning. 

KEY WORDS: Boltzmann equation; temperature transform; Maxwell 
molecules; very hard particles; N-pole approximation. 

1. I N T R O D U C T I O N  

We cons ider  a di lute  gas of  s t ructureless  par t ic les  which interact  th rough  
b inary  elastic collisions.  We want  to ob ta in  the co r r e spond ing  one-par t ic le  
d i s t r ibu t ion  funct ion f ( r ,  p, t), whose t empora l  evo lu t ion  is usual ly  charac-  
terized by  the Bo l t zmann  equat ion.  This is a non l inea r  integrodifferent ia l  
equa t ion  with a very complex  ma thema t i ca l  s tructure.  In  o rde r  to gain  
insight into the re laxa t ion  to equi l ibr ium,  a great  var ie ty  of  models  have 
been cons idered  in the l i terature.  ~1'2) The s implest  real  mode l  is ob t a ined  by 
cons ider ing  spa t ia l ly  homogeneous  and  i so t ropic  m o m e n t u m  dis t r ibut ions ,  

i.e., f ( r ,  p, t) = f ( p ,  t), U n d e r  these condi t ions ,  significant progress  has been 
achieved in the s tudy of  exact  so lu t ions  of the non l inea r  equat ion.  In  the 
recent l i te ra ture  in tegra l  t r ans fo rmat ions  have been employed  for ob ta in ing  
more  a p p r o c h a b l e  s implif icat ions.  

In 1976 Bobylev  ~3) used a F o u r i e r  t r ans fo rma t ion  in m o m e n t u m  space 
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and found a particular exact solution (the BKW mode) for Maxwell-type 
interaction models. However, for non-Maxwellian models the nonlinear 
collision term is not separable in energy and angle and no major sim- 
plification is achieved. ~4) Another transformation technique suitable for 
Maxwell models was introduced by Alexanian. (5) This approach offers a 
deep insight into the characteristics of the temporal behavior of the energy 
distribution. However, the solution is expressed as a tricky combination of 
delta functions and their derivatives. A third approach is based on a 
Laplace transformation in the energy variable. Krook and Wu (6) applied 
this method for three-dimensional Maxwell models with isotropic scatter- 
ing and succeeded in obtaining the BKW solution simultaneously with 
Bobylev. Afterward this Laplace transform was generalized for a larger 
special class of Maxwell models, denoted as go(/*, P) models.(7'8) In spite of 
not being applicable to all Maxwell models, the Laplace transform method 
is not strictly limited to them. Actually, by means of a Laplace transfor- 
mation, Hendriks and Ernst succeeded in solving the Cauchy problem in 
closed form for a two-dimensional, very hard-particle (VHP) model. 
However, an alternative approach is required in order to extend the use of 
this method to other interaction models. 

In the present paper we introduce an integral transformation for 
solving the homogeneous and isotropic nonlinear Boltzmann equation. We 
show that this transformation has a simple physical meaning and can be 
directly applied to VHP and Maxwell models. This capability singles out 
the defined transform from others. 

In the following section we state the notation to be used. In Section 3 
we introduce our method, which gives a temperature transformed dis- 
tribution G(s, t) with a quite simple analytical structure. In Section 4 we 
show that the characteristics and time evolution features of f(p, t) are 
mainly given by the behavior of the singularities of G(s, t). Using this 
technique, we study the relaxation toward equilibrium for the very hard- 
particle model in Section 5, and all Maxwell models in Section 6. The time 
evolution features for both VHP and Maxwell models are compared. Many 
basic differences are clearly found by means of the method proposed in this 
paper. 

2. BASIC  C O N C E P T S  A N D  N O T A T I O N  

In 1872 Boltzmann proposed an equation for the temporal evolution 
of the distribution function f(r,  p, t) of a diluted gas of particles without 
internal degrees of freedom, "~ 

(~ta + P. Vr + Ve. Vp) f(r, p, t)= B[f  f ]  (2.1) 
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For a gas of molecules interacting through binary collisions, the 
bilinear collision operator reads 

BE f, f ]  =fga(g ,  g" ~)Ef(r, p', t) f (r ,  Pl, t) 
m 

-- f (r ,  p, t ) f ( r ,  Pl, t)] dpx dh (2.2) 

Here a(g, ~ .~)  is the differential cross section for the binary collision 
(p, p l ) ~  (p', p'~), with g = P l - P  and g' = p ' l - p '  the relative momenta. 
From the energy and momentum conservation laws we have (2) 

P' = �89 + P l ) - � 8 9  ~, P'I =�89 P~)+ �89 ri (2.3) 

and it follows that g ' - - g . h  (~ is a unit vector in the direction ofg'). 
In view of the possible application to systems of one, two, or three 

dimensions, it is convenient to consider the position r and momentum p of 
the particle of mass m as vectors of arbitrary dimension 2v. 

For a spatially homogeneous distribution function f(p,  t) and without 
external forces (Fe = 0), the Boltzmann equation reads 

~ f ( p ,  t) = BE f ,  f ]  (2.4) 
U t  

Conservation of particles, momentum, and energy requires 

ff(p, t) dp = t/ (2.5) 

ff(p, t)p dp = 0  (2.6) 

p2 
f f(p, t ) ~  clp = vrlkT (2.7) 

where ~/ is the number density and k is Boltzmann's constant. The tem- 
perature of the gas is given by the average energy per degree of freedom 
(e)=vkT. The second conservation law indicates that the temporal 
evolution of the gas is observed from the center-of-mass reference frame 
( p )  =0.  

The //-theorem guarantees that f(p,  t) will approach the Maxwell- 
Boltzmann distribution for any initial condition: 

11 _ p 2 / 2 m k  T (2.8) 
f(p,  t) ~ fo(P) - (2nmkT)': e 

822/45/3-4 19 
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The distribution function remains positive for all p and all t ~> 0 when the 
initial state f (p ,  0) is positive. ~  

Henceforth, we shall consider isotropic momentum distributions, i.e., 
f(p, t) with p = ]pl. In the energy representation this distribution function is 
defined in the following way(Z): 

That is, 

F(5, t )= f6 (5  p2 - ~m) U(p' t) dp (2.9) 

2 ~  v 
F(5, t)=~--~ m(2me)V-~ fF(2ma)l/2, t] (2.10) 

Now the conservation laws are 

fo~ F(e, t) ds=r /  (2.11) 

fo~ F(e, t)e & = vr/kT (2.12) 

and F(5, t) approaches equilibrium as a gamma distribution function: 

( ) 5 ~/~r (2.1.3) V ( vr/-) -UT -U~5 v - Fo(e) 

In the energy representation Eq. (2.4) may be written in terms of the 
scattering kernel 

dp dpl dR ga(g, ~. fi) 
K(5', 5; E) = J m3127zVF(v)]214rnes(E - g)]v 1 

p,2~ (e__~_~m) 6 (E p2 p~ ~ (2.14) 
x 6(~' ~m/a 2m 2mJ 

which describes the transition probability in the collision 
(e, E - 5 ) ~  (e', E - 5 ' ) .  The brackets indicate the energy of the particles 
before and after the collision. Conservation of the total energy E requires 
the kernel (2.14) to be null outside the region 5, 5 '<  E. Finally, we obtain 

0 
r(5, t ) =  f~dE j'~" &' [K(5, 5'; E)F(5', ,)F(E-5', ,) 

8t 

- K(d, ~; E) F(5, t) F ( E -  a, t)] (2.15) 
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3. T E M P E R A T U R E  T R A N S F O R M  

We introduce the temperature transform G(s, t) of F(e, t) as fol- 
lows(12): 

F(e, t ) = 1 _ ~  F~.(e) G(s, t )ds  (3.1) 
27zi r 

The path F encircles the singularities of G(s, t) in the counterclockwise 
direction, and F,(e) is the equilibrium gamma distribution function with a 
modified temperature ( 1 - s ) T ,  i.e., 

F,(e) = tl k r ( f  - s) F(v) kT(1 - s) e ~/kr~ - s~ (3.2) 

Equation (3.1) is an integral transform as defined by Courant and 
Hilbert, ~13) where the kernel F~(~)/Fo(e ) is the generating function of the 
Laguerre polynomials L~-l (e /kT) .  Physically, this transform may be inter- 
preted as a linear superposition of equilibrium states with variable tem- 
peratures. G(s, t) represents the weight of each of these states. The conser- 
vation laws (2.11) and (2.12) as well as the equilibrium distribution for 
G(s, t) are easily obtained from Eq. (3.1), 

f rG(s ,  t) ds = 27ri (3.3) 

~rG(s, t)s ds = 0 (3.4) 

G(s, t) t~ oo ~ Go(s)= 1/s (3.5) 

Now we will discuss the relation of G(s, t) to other integral transforms 
considered in the recent literature. (2 9) We will show that G(s, t) results 
from successive Laplace and Fourier transformations of F(e, t). The 
Fourier transform introduced by Bobylev (3) has proved to be the most 
general and useful one, leading to a simple treatment of the nonlinear 
Boltzmann equation for Maxwell interaction models. In the momentum 
representation this transform reads 

and 

~b(r, q, t) = f f (r ,  p, t) exp( - ip' q) dp 

1 
f(r ,  p, t) = ,~-7~)~[zrt)_ f ~(r, q, t) exp(ip, q) dq 

(3.6) 

(3.7) 
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The Fourier transform of a spatially uniform system with an isotropic 
momentum distribution may be written in terms of F(e, t). Defining 
O(q, t )= tltP(�89 2, t), we have 

if: ( O(z, t ) : ~  oF 1 v, - F(e, t)de (3.8) 

and 

F(e, t) -- F (v~  kT fo  \-k-Tit oF' _ ze (3.9) 

The distribution at equilibrium is Co(z), where we define 0s(z) with a 
modified temperature (1 - s)T: 

Os(Z ) = e-(1 -s)z (3.10) 

A sufficient condition for the existence of ~,(z, t) is that the distribution 
function belongs to the Hilbert space 5q2(0, oo): the space of square- 
integrable functions defined on the interval 0 ~ e ~< 0% with norm (2) 

o~ 2 de 
IIFII2=(Jo IF(e,t)l F---~<oo (3.11) 

There is no physical reason to prevent consideration of a distribution 
function not belonging to this Hilbert space. ~3) However, we shall restrict 
our attention to this space, unless otherwise stated. 

In order to relate the characteristic function O(z, t) with our transform 
G(s, t) [-Eq. (3.1)3, we require r t)/~po(Z ) to belong to f2~ (as defined in 
the Appendix). Then its Laplace transform 

G(s, t) = e z(s ~)~p(z, t) dz (3.12) 

belongs to co~, and satisfies the following Pincherle inversion formula: 

~p(z, t)=2-~t" ~,,(z) G(s, t) ds (3.13) 

Replacing this expression in Eq. (3.9), it is easy to show that G(s, t) is just 
our temperature transform. 

The representation of G(s, t) given by Eq. (3.12) is similar to the 
generalized Laplace transform introduced by Ernst for go(#, P) models-/7) 
For p = 1 both integral transforms are the same, except for a change of 
coordinates. 
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Since ~,(z, t)/Oo(Z) is required to be an entire function, its MacLaurin 
series 

O(z, t) = tPo(Z) ~ cn(t) z~ (3.14) 

converges and represents O(z, t) for all complex z. Then from Eqs. (3.12) 
and (3.14) we have 

c . ( t )  (3.15) G(s, t) = s" + 1 
n~O 

This expansion is analytic outside a circle jsl = 7, but not outside any 
smaller circle (i.e., belongs to c%), with 

7(0 = lim sup rc,(t)l 1/n (3.16) 
n ~ c o  

We also point out the relation with another integral transform, i.e., 
Alexanian's transform A(O, t), which reads (5) 

F(e, t) = Fo(e) A(O, t) dO (3.17) 
c~ 

with the following conservation rules and asymptotic condition: 

f l  A(O, t) = (3.18) dO 1 
--oo 

f l  A(O, t)OdO=O (3.19) 
--oo 

A(O, oo)=6(0 )  (3.20) 

It should be noted that this transform may be considered as another tem- 
perature distribution function. However, delta-type singularities make 
A(O, t) a tricky mathematical tooL (z) The relation between G(s, t) and 
A(O, t) can be obtained from Eqs. (3.8), (3.12), and (3.17): 

f i  A(O,  [2) d o (3.21) 
G ( s ,  t )  = _ oo s - 0 

This shows that delta-type singularities of A(O, t) are replaced by complex 
poles in G(s, t), allowing the use of powerful mathematical methods such as 
Heaviside's expansion theorem (14~ and the technique of rational 
approximants.~15) 
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4. S I N G U L A R I T I E S  OF T H E  T E M P E R A T U R E  T R A N S F O R M  

Equation (3.1) shows that the time evolution features of F(~, t) are 
mainly given by the behavior of the singularities of the temperature trans- 
form function. In this section we shall discuss some relevant characteristics 
of these singularities. 

Here, we consider that the only singularities of G(s, t) are poles on the 
complex plane. That means that the distribution has an exponential decay 
at large energy. From the physical point of view a potential decay is 
allowed, but in this case F(e, t) will not belong to the Lf2(0, ,o) space 
defined by Eq. (3.11), and G(s, t) will have cuts in the complex s-plane. 
Actually, a cut line might go beyond the nonanaliticity circle Is1 = ~'. This is 
an interesting point, which will not be discussed in this paper. 

The discussion in Section 3 suggests that the localization of the polar 
singularities of the temperature transform function would be related to the 
asymptotic behavior of the characteristic function O(z, t). Let us introduce 
the concept of indicator function 7qb, t) of kO(z, t)O4): for a fixed time t, 
7qb, t) denotes the infimum of all real numbers a(t) such that 

4~(pe'~, t) 
~o(peir ) < e  ~p (4.1) 

singularities ~ 

Im s 

/ /A  

1 Res 

Fig. 1. Location of the singularities of the temperature transform G(s, t). 
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for all sufficiently large p~>0. Hence, 7(~b, t)~<7(t). Actually, G(s, t) is 
analytic outside the closed half-plane Re(sei~)~<7(~b, t) for each q~. The 
intersection of all these half-planes containing all singular points of G(s, t) 
defines the convex hull of the singularities of G(s, t). Since F(e, t) is real, 
0*(z*, t) = 0(z, t), and 7(~b, t) is an even function of ~b; i.e., the convex hull 
is symmetric with respect to the real s axis. In conclusion, the singular 
points of G(s, t) lie on the real axis or join in complex conjugate pairs. 
Furthermore, the requirement of F(e, t) belonging to 5~ oo) restricts the 
convex hull to the region 17(0, t)l < 1 (Fig. 1). 

We have shown that the time evolution of the distribution function 
F(e, t) is mainly determined by the behavior of the singular points of the 
temperature transform G(s, t). For the case of N simple poles, this function 
may be written 

N %(t) (4.2) 
t )= o-.(t) 

n = l  S -  

where the conservation laws (3.3) and (3.4) impose 

N 

Z c~,-- 1 (4.3) 
n ~ l  

N 

2 ~,~,  = 0  (4.4) 
, 7 - - 1  

Applying Eq. (3.l) to Eq. (4.2), we can write F(e, t) in terms of the 
singularities of G(s, t): 

N 

F(e, t )=  ~ c~,(t) F~,(,)(g) (4.5) 
n = l  

This formula expresses F(e, t) as an expansion in equilibrium gamma 
distributions (3.2) with modified temperatures given by the location of the 
poles of the corresponding transform G(s, t), Tn = ( 1 -  an)T, and modified 
number densities fixed by the respective residues q , =  c~nr/. Therefore, the 
analysis of the singularities of the temperature transform function describe 
the evolution of the distribution function. 

Up to now we have been concerned with the location and some 
characteristics of these singularities. In the rest of this paper we shall aim at 
a study of their temporal evolution for different interaction models, i.e., the 
very hard-particle model in Section 5 and the Maxwell models in Section 6. 
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5. V E R Y  H A R D - P A R T I C L E  M O D E L  

We consider an interaction model which allows a closed analytical 
solution of the corresponding nonlinear Boltzmann equation for initial 
conditions with arbitrary exponential decay. These analytical solution will 
give an explicit confirmation of many assumptions sketched in the previous 
section as well as show new properties of the temperature transform G(s, t). 

We analyze a two-dimensional system of very hard particles charac- 
terized by a collision cross section 

/~ g 1/2 o(g, ~ - , ~ ) = ~  E1- (~ ,~)~3 (5.1) 

This interaction model was introduced by Hendriks and Ernst. (9) 
Mathematically most of this section follows their work. 

The corresponding Boltzmann equation reads 

f0 ~ + ~ - ~ + 1  F(e , t )=  dE de'F(a',t) V ( E - e ' , t )  (5.2) 

Through a change of variables the temperature transformation of 
Eq. (5.2) gives an ordinary differential equation of Riccati type with 
solution 

where 

and 

I e #t 1 G(s, t) 1 1 4 
= s  ( s - 1 ) [ s q ) ( r ) - s ( s - 1 ) e - ~ t ]  (5.3) 

s + #t(s - 1 ) 
r(s, t )=  (5.4) 

1 + # t ( s  - 1 ) 

lIfr 1,+ 1 ] 
q~(r) r ( r -  1)FrG(r, 0 ) -  1] (5.5) 

This solution will allow us to find for this particular model the charac- 
teristic features of the time evolution of the singular points of G(s, t). 
Equation (5.3) shows its singularities moving toward the point s =  1 and 
fading out as time elapses. This characteristic point corresponds to a null 
temperature and henceforth will be called the escape point. However, there 
is one first-order pole corresponding to a solution of the equation 

sq~(r)- (s-- 1) e-" '  = 0  (5.6) 
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which approaches the equilibrium point s = 0 for large t. This pole is com- 
monly described as the Maxwell pole of G(s, t), since it gradually builds up 
the Maxwell equilibrium distribution function Fo(e). At large values of the 
energy the approach of F(g, t) to Fo(e) will be from above or below, 
depending on whether the equilibrium point s = 0  is reached by the 
Maxwell pole from the left or the right, respectively. 

Now we shall consider some particular initial distributions in order to 
gain further insight into the relaxation process toward equilibrium. One of 
the simplest examples of initial distributions is a superposition of N 
Maxwellians with different temperatures 

N 

F(e, 0)= ~ ~,,(0) F~.(o)(e) (5.7) 
n=l 

This is equivalent to the presence of N simple poles in the corresponding 
temperature transform 

N 
6(5,, o ) =  S (5.8) 

n = 1 5' - -  a n ( 0  ) 

A notable result is that this distribution keeps its structure at all times. 
It remains as a linear combination of N Maxwellians. The real pole farther 
left is the Maxwell pole and moves toward the equilibrium point s = 0, 
while the rest approach the escape point s = 1. 

An interesting example of such initial conditions is given by the com- 
bination of a pair of complex poles with a real one in the corresponding 
temperature transform. The presence of such a pair of complex poles 
corresponds to an oscillatory behavior of the distribution function. This is 
the case of the function 

Normalization of particle number and total energy requires the following 
relations between the parameters: 

(3--a)  1/2 (5.10) 
b = a 1 ) 

2a 
(5.11) f l = 3 - a  
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The corresponding temperature transform has three poles o.1, o.a, and o- 3, 
which initially are given by 

a - 1  
f f l ( O ) =  ( 5 . 1 2 )  

a 

1 
0 - 2 ( 0 )  = 0 - * ( 0 )  = 1 - - -  (5.13) 

a - i b  

For the case a = 1.4 we have plotted the stroboscopic images of the poles 
and the corresponding residues in Fig. 2. We observe the motion described 
above�9 The real pole 0-1 moves toward the equilibrium point, while the 

0.4 

0.2 

0.0 

-0.2 

re_O j ,  
E O.S 

0.0 

0.0 
I 

Q 

. . . . . . .  + 

0.5 1.0 
[ 

~.At:  0.5 
+ 

".... 

,,,,.-e 

+ 

+ 

t 

i~ZXt : O~ 

> 

4- 

. . . . .  .+ 

- 0 . 5  I I 
0�9 0.5 1.0 k5 

Re S 

Fig. 2. Stroboscopic temporal images in the complex s plane of (a) poles and (b) residues for 
the VHP model with the initial condition given by Eqs. (5.9)-(5.11), with a =  1.4�9 The initial 
position is indicated by a plus sign. 
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complex poles go to the escape point. The time evolution of the deviation 
from equilibrium 

F(~, t) - Fo(e) 
R(e, t ) =  (5.14) 

Fo(~) 

is shown in Fig. 3. 
An approximate solution of the nonlinear equation is usually desired. 

For small deviations from equilibrium, we can neglect quadratic terms in 
Eq. (5.2), obtaining the following linearized Boltzmann equation: 

+~+~--~+ l R(~, t )=  l?(~', t) de' (5.15) 
Jo Fo(e) 

This equation can be solved by the same method previously applied to the 
nonlinear equation. The solution is 

aL(s, t) = - l  1 + - -  B(r) (5.16) 
s s (s -  l) 

where r(s, t) is given by Eq. (5.4), and the arbitrary function B(r) is deter- 
mined by the initial distribution G(s, 0): 

B(r) = r(r - 1 )[rG(r, 0) - 1 ] (5.17) 

with r given by Eq. (5.4). Introducing Eqs. (5.8) and (5.17) into Eq. (5.16), 
it is easy to prove that for large times all the N poles of the initial dis- 

I ] I I -'~ I l I I 
c 

E 
9 z 
5 
g 
E 

o 0 I ~t=0o - I 

.o 

D 

- 1  I 

o 5 lo 
g/kT 

Fig. 3. Deviation from equilibrium for the case described in Fig. 2. 
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Fig. 4. Time evolution of the VHP linearized solution with initial conditions given by 
Eq. (5.7) and ~rl(0) = 1/4, a2(0) = 3/4. (a) Poles, (b) residues, and (c) zeros of G(s, t). 
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tribution (5.8) move toward the escape point s = 1 for large time, according 
to 

~ o ( o ) -  [ ~ n ( o ) -  1] ut 
~ n ( t )  - ( 5 . 1 8 )  

1 - [ ~ ( o ) -  11 ~t 

However, Eq. (5.16) shows no Maxwell pole approaching the equilibrium 
point s = 0. Now, a double pole appears at this point and rests there for 
t = 0. The time evolution of the temperature transform for the linearized 
case is given by 

aL(s, t) =/~'(t) + /~ j )+ 
s ,, = ,  s - G,,(t) 

(5.19) 

where all the residues approach zero asymptotically, except for ill(l), which 
approaches 1. It is obvious that initially fi~(0) =/32(0) = 0. The appearance 
of a double pole in the equilibrium point has to be accompanied by the 
appearance of a double zero at that point. Afterward, it branches out into 
two simple zeros. One of them, after moving away, comes back to the 
equilibrium point asymptotically, while the other zero moves toward the 
escape point s =  1. These characteristics of the time evolution of the 
linearized solution for the very hard particle model are shown in Figs. 4 
and 5. 

0.4 

0 2  

0.0 

- 0 . 2  

i r I 

a= 1.4 IX A t  : 0.5 
+ 

+ + 

"% 

~149 ,o 

+ 

- 0 . 4  I I I 
0.0 0.5 10 

Fig. 5. As in Fig. 2 when the linearized approximation is used. 
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6. M A X W E L L  M O D E L S  

In order to simplify the complex mathematical structure of the 
collision term in Eq. (2.2), we look for mathematical models of the cross 
section with a simple dependence on the relative momentum and the scat- 
tering angle. Maxwell models provide a large simplification of the 
Boltzmann equation, since the collision probability depends on the scatter- 
ing angle and not on the relative momentum: 

g a(g, ~, h) = e(fi,, h) (6.1) 
m 

A scattering cross section with this characteristic may be obtained 
from a repulsive interaction potential V(r)= ar-" with s = 2(2v-1) .  The 
probability e(~.f i)  becomes a rather complicated function of its 
arguments. ~176 However, we may define more general mathematical models 
by a convenient choice of the function e(~- t~). In general, the models so 
introduced are not derived from a two-body interaction potential. A quite 
interesting class of such models is given by the choice (2) 

e(cos 0) = t~F(v - �89189 sin 0 )  2 ( p -  v)+ 1/t/(4~)v-1/2 B(p, p) 

[g0(/~, P) models] for which the temperature transformed Boltzmann 
equation can be easily obtained: 

-fi-~+ljos-~p 1G(s,t)= B(p,p)[_•sp_lG(S,t) (6.2) 

A similar simple equation can be proved for the delta [~(cos 0) ~ 6(cos 0)] 
and other Maxwell models. However, we shall follow a more general and 
useful approach: The solution in the 5~ oo) space of the nonlinear 
Boltzmann equation for isotropic Maxwell models can be written as an 
expansion in generalized Laguerre polynomials(Z): 

F(~, t) = Fo(e ) ~ C,(t) L~-l(8/kT) (6.3) 
n~O 

which is equivalent to a Laurent expansion of G(s, t), Eq. (3.15). Putting 
this into the Boltzmann equation, we obtain the following infinite set of 
equations for the moments C~(/), r 

Co(t) = 1 (6.4) 

C,(t) = 0  (6.5) 

[ ;on, ] C,(t)=e -A"t Cn(0)+ e A"~ ~ #~mCm(z) C~ m(r)d~ (6.6) 
m = l  
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where the real coefficients/~nm are given in terms of the scattering cross sec- 
tion (6.l) by 

i )  (sin ~) dh (6.7) 

and A, are the eigenvalues of the linearized collision operator 

A, , : ~ ( c o s 0 ) [ l  ( 0\2n /" = +~.o--tcos~)-tsin~)2"]dr7 (6.8) 

Expression (6.6) gives the general solution of the nonlinear Boltzmann 
equation for Maxwell models, with initial conditions in the Hilbert space 
LP2(0, oo). Several authors have investigated these solutions/2'4'15) They 
found sufficient conditions for the existence of such solutions and the 
absolute convergence of the expansion given by Eq. (6.3). (16'17) Iterative 
solution of  the moment equation has been considered in a previous 
paper.~s) 

Applying the Cauchy-Hadamard formula (3.16) to expression (6.6), it 
is possible to show that for an initial condition (5.7) the growth parameter 
y(t) is time independent. All the singularities of G(s, t) are restricted to 
Isl ~<~: with ~:=max~ I~,,(0)l. It indicates a completely different behavior 
with respect to the time evolution displayed by the very hard-particle 
model, where ~:(t)--+,~ 1. 

A different type of initial distribution is given by the BKW mode. This 
mode has been obtained by Bobylev (3) and Krook and Wu ':6) as a par- 
ticular exact solution for a velocity isotropic and spatially uniform gas with 
Maxwell-type interactions. It is given by 

with 
a(t) = a(O) e-A2~/2 (6.10) 

We see that the BKW mode constitutes a class of particular solutions, 
which is parametrized by the constant a(0). This coefficient has the follow- 
ing constraint imposed by the positivity of the solution: 

0 < a ( 0 ) <  1/(1 + v) (6.11) 

The particular Maxwell interaction model is fixed by the eigenvalue. The 
moments of the Laguerre series (6.2) are given by 

C,(t) = (1 - n)[a(t)]  n (6.12) 
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Then from Eq. (3.16) we obtain the temperature transform 

G(s, t) = (s - 2o-)/(s - o-) z (6.13) 

which has a real double pole decaying exponentially toward the 
equilibrium point according to Eq. (6.10). For this particular distribution 
function the number of poles of the temperature transform is conserved in 
time. However, and except for certain particular interaction models and 
initial conditions, new poles will appear as time elapses. 

Let us consider that the initial temperature transform has N simple 
poles. For Maxwell models the number of poles will not be conserved in 
time. However, we shall suppose that even in these models the distribution 
function can be adequately approximated by a combination of N simple 
poles at any time: 

N O~m(t) 
GN(S, t ) =  ~ am(t) (6.14) 

m = l  S -  

This is equal to Eq. (4.2), but now it would be considered as an 
approximation to the true G(s, t ) ,  namely the Pad~ approximant 
I N - l / N ] .  (19) We will define the poles and residues by requiring the 
rational approximant to be equal to the temperature transform expansion 
up to the 2Nth order in 1/s. Comparing Eq. (6.14) with the Laurent expan- 
sion (3.15) and equating the coefficients of the same powers of 1/s, we 
obtain the following system of coupled equations: 

N 

2 0 t ~ m ( 0 - r n ) n  = C n ( t ) ;  0 ~< n < 2N ( 6 . 1 5 )  
m ~ l  

In principle this system would allow us to calculate the poles 0-m and 
residues ~r~ of the rational approximant (6.14), starting from the moments 
(6.6). It is important to note that the usual method for solving the system 
(6.15) (namely the product-difference algorithm of Gordon ~2~ cannot be 
applied here. In view of the conservation laws of particle number and total 
energy, the first two moments are Co(t) = 1 and Cl( t )  = 0, and therefore the 
algorithm fails. However, it is easy to show that the poles a m are roots of 
the characteristic equation ~19) 

ii0 cl cN] C1 C2 

P(x )  = det (6.16) 

1 C 2 N -  1 

X " ' "  X N 
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When these poles have been obtained, the respective residues may be 
calculated as the solution of the following Vandermonde linear system: 

0-1 

. ~  

0-N 0~2 : 

0- N 

c~ 1 C1 
(6.17) 

This straightforward method is adequate for low values of N, say N~< 10. 
For higher values of N a more refined technique is required, i.e., some 
modified version of the quotient-difference algorithm of Rutishauser. 121) 

The use of the Padb approximant (6.14) is equivalent to 
approximating the distribution function F(e, t) with a linear combination of 
equilibrium gamma distributions (3.2) with time-dependent temperatures 
and densities. This gives for F(e, t) an expression equal to Eq. (4.5). As 
described in Section4, the expansion (4.5) has a clear physical inter- 
pretation. We can ask: "Why do we use this approximant instead of the 
Laguerre series (6.3)?" In fact, for a given initial condition, the solution of 
the Boltzmann equation can be found by the analytical resolution of the 
system (6.6) for the moment Cn(t) up to a certain order n ~< N. However, 
from the asymptotic behavior 

LVn -1 ~ -~. - - ~ ]  , e~>kT (6.18) 

it is clear that the truncated Laguerre series calculation is necessarily 
restricted to low values of energy e < E(N,  t). This E is an increasing 
function of the truncation order N and time t. Therefore, it is desirable to 
improve the numerical convergence, especially for small times. With respect 
to this point, Barnsley and Turchetti (2~) have shown the convenience of 
using generalized Pad6 approximants. We are not particularly interested in 
the convergence of these approximants, but in the temporal evolution of 
the poles and residues of the corresponding temperature transform given by 
Eq. (6.14). Since C n / C  m ----r t ~ oo 0 for n > m # 1, it is quite easy to show that 
all the roots of the characteristic equation (6.16) tend to zero as time elap- 
ses. This is a notable result, since it shows a quite different behavior than 
the very hard-particle model. In that case all the poles move toward the 
escape point except for one pole (the Maxwell pole), which moves toward 
the equilibrium point. Here all the singularities behave as Maxwell poles 
exponentially approaching the equilibrium point. 

822/45/3-4-20 
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The simplest example is given by the bipolar approximant G2(s, t). 
The characteristic equation reads 

1 0 

P ( x ) = d e t  0 C2 

1 x 

C2 

C3 
X 2 

= C2 x 2 -  C3 x - C 2 = 0 (6.19) 

Furthermore, we know that the eigenvalue spectrum shows only one 
degeneracy, (2) i.e., 

3A 2 = 2A 3 (6.20) 

Then the change of variables y = x e  Azt/2 in Eq. (6.19) gives 

C2(0 ) y2 _ C3(0 ) y _ C2(0)2 = 0 (6.21) 

We conclude that the time dependence of the poles is simply given by the 
exponential factor ~ ~  namely 

al( t )  = ~1(0) e -Aat/2, O'2(f ) = 0-2(0) e -Azt/2 ( 6 . 2 2 )  

The residues are obtained from Eq. (6.17)�9 They are time independent: 

0"2(0 ) 0"1(0 ) 
O~l(t) - -  0"2(0 ) - -  0 - 1 ( 0 ) '  0~2(t) = a,(O) - 0"2(0) ( 6 . 23 )  

7. C O N C L U S I O N S  

In the present paper we have introduced an integral transform of the 
distribution function for the velocity isotropic and spatially homogeneous 
case. We show the relation of this method to the following transformations: 
(1) the Fourier transform employed by Bobylev, (2)the Laplace transform 
applied by Krook and Wu, and (3) the transform formulated by Alexanian. 
These latter transformations are devised for particular interaction models; 
we show that the temperature transform has a straightforward application 
to the models considered here, namely the Maxwell and very hard-particle 
models. The approach shows that the characteristics and time evolution 
features of the velocity or energy distribution of particles are mainly deter- 
mined by the behavior of the singularities of the temperature transform. 
The relaxation to equilibrium of the singular points can be obtained under 
very general conditions and depends on the specific interaction model and 
not on the initial conditions imposed on the distribution. The temperature 
transform does not lead to any new relaxation phenomena in the con- 
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sidered cases, but the pole movements give a quite elegant and unified 
vision of the approach to equilibrium. We find that for the very hard-par- 
ticle model there is a single pole which determines the relaxation process, 
and for the Maxwell interaction case all the poles contribute to the large- 
time behavior. We remark that the trajectories of the poles determine the 
evolution of the system. Our discussion is confined to single poles even 
when more complex singularities could be analyzed. 

A P P E N D I X  

Here we will define the space (2 7 of entire functions of exponential type 
with growth parameter ?. We say that f ( z )  belongs to f2~ when: 

1. f ( z )  is an entire function in the z-complex plane, 

Cnz~ (AI) f ( z )  = -~. 
n = 0  

2. f ( z )  is of exponential type, which means that there exists c~>0 
such that 

max If(z)[ < e =v (A2) 
izl =p 

for all sufficiently large p. The infimum 7 of all these numbers ~ will be 
called the growth parameter off(z) .  

When f (z)  e ~  it has a Laplace transform (14) 

G(s) = t ~ e ~'f(z) dz (A3) 
Jo 

well defined and analytic, at least for Re(s)>7- Let coy be the class of 
functions of a complex variable s, analytic outside the circle Isl = 7 and out- 
side no smaller circle, and vanishing at infinity. It may be shown that for 
every 7 ) 0 ,  Eq. (A3) defines a one-to-one mapping of f2~ o n t o  (2)?. (14) 
Pincherle's theorem gives an inversion formula for Eq. (A3): 

f(z)=2@ii ~re~'a(s) ds (A4) 

where F encircles the set Isl ~< ? in the counterclockwise sense. From Eqs. 
(A3) and (A1) we have (Hardy's theorem) 

tAs> 
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